

Challenges using LLVM for OCaml
A rant about garbage collection in LLVM

Stephen Dolan

Cambridge LLVM Day

Monday 18th November 2013

LLVM

is a general purpose compiler framework

that can handle the entire spectrum of
programming languages

C89
C99

C11

Garbage collection

is a modern* technique for memory management

used in a couple of research languages
(not ones used for Real Programming, of course)

*McCarthy, 1959

Garbage collection

Automatically free memory
when it's no longer referenced

To do this, we need to find the pointers

Finding pointers in the heap

0x9f03a9d4

0x6c616ea1

0xc04f3210

0x2ccb9689

0x9f03a9d4

0x6c616ea1

0xc04f3210

0x2ccb9689

Tables
(Haskell)

Tags
(OCaml)

...

... ...

...
ptr

int

ptr

int

How do we find the pointers on the stack,
when the compiler doesn't tell us where they are?

How do we find the pointers on the stack,
when the compiler doesn't tell us where they are?

stuff

Conservative GC

Conservative GC

● Scan everything, looking for “pointers”
– can leak when non-pointers look like pointers

● GC can never move objects
– kills most of the good GC algorithms

How do we find the pointers on the stack,
when the compiler doesn't tell us where they are?

Separate stack

in some array

Separate stack
f :: String -> [String] -> String
f s l = if elem s l
 then s ++ " was found!"
 else s ++ " wasn't found."

 movq %rcx, -8(%rbp)
 movq $sn4_info, -16(%rbp)
 movq %rdx, %rbp
 movl $M_fzuzddEq_closure, %r14d
 movq %rcx, %rsi
 movq %rax, %rdi
 jmp base_GHCziList_elem_info

push s onto GHC's stack
(which is an array of int64)

tail-call “elem”

Separate stack

● Separate function for every block
– defeats LLVM intra-procedual optimisations

● Locals often end up on GHC's stack
– defeats LLVM local variable optimisations

● All calls done via jmp
– defeats hardware return prediction

Shadow stack

● Keep variables on the normal stack, but also
put a copy elsewhere for the GC to find.
– LLVM has support for this
– Doesn't defeat optimisations quite as much
– Lots of overhead

How do we find the pointers on the stack,
when the compiler doesn't tell us where they are?

Stack maps

does

Stack maps
let f (s : string) (l : string list) =
 if List.mem s l
 then "a" ^ " was found!"
 else "a" ^ " wasn't found."

call camlList__mem_1156@PLT
.L102:

 ...

camlM__frametable:
.quad 1
.quad .L102
.word 16
.word 0

do a real call

stack map as static data

Stack maps

● No overhead while not GC-ing
– compiled as static data about the code

● Compiler must tell runtime where values are
– Compiler must keep track of values through

optimisations

Stack maps in LLVM

@llvm.gcroot

● Per-function, not per return address
– extra overhead clearing slots
– buggy interactions with inlining (#16778)

● Can't express that a register is a root
– has to spill everything anywhere GC could happen

● No builtin support for actually generating a map
– “implement your own plugin”

</rant>

● LLVM nearly supports efficient GC
– but @llvm.gcroot is a poor interface
– and it's buggy
– and you have to write a nontrivial LLVM extension

to use it

● Questions? Counter-rants?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

