
Polymorphism, Subtyping, and
Type Inference in MLsub

Stephen Dolan and Alan Mycroft

Computer Laboratory
University of Cambridge

November 8, 2016



The select function

select p v d = if (p v) then v else d

In ML, select has type scheme

∀α. (α→ bool)→ α→ α→ α



Data flow in select

select p v d = if (p v) then v else d

v

argument to p result

d

In MLsub, select has this type scheme:

∀α, β. (α→ bool)→ α→ β → (α t β)



Data flow in select

select p v d = if (p v) then v else d

v

argument to p result

d

In MLsub, select has this type scheme:

∀α, β. (α→ bool)→ α→ β → (α t β)



Γ ` e : τ



Γ ` e : τ



Expressions of MLsub
We have functions

x λx .e e1 e2

... and records

{`1 = e1, . . . , `n = en} e.`

... and booleans

true false if e1 then e2 else e3

... and let

x̂ let x̂ = e1 in e2



Γ ` e : τ



Typing rules of MLsub

MLsub is

ML +

(Sub)
Γ ` e : τ1
Γ ` e : τ2

τ1 ≤ τ2



Γ ` e : τ



Constructing Types

The standard definition of types looks like:

τ ::= ⊥ | τ → τ | >

(ignoring records and booleans for now)

with a subtyping relation like:

⊥ ≤ τ τ ≤ >
τ ′1 ≤ τ1 τ2 ≤ τ ′2
τ1 → τ2 ≤ τ ′1 → τ ′2



Constructing Types

The standard definition of types looks like:

τ ::= ⊥ | τ → τ | >

(ignoring records and booleans for now)
with a subtyping relation like:

⊥ ≤ τ τ ≤ >
τ ′1 ≤ τ1 τ2 ≤ τ ′2
τ1 → τ2 ≤ τ ′1 → τ ′2



Lattices

These types form a lattice:

I least upper bounds τ1 t τ2
I greatest lower bounds τ1 u τ2

e1 : τ1 e2 : τ2
if rand () then e1 else e2 : τ 1 t τ 2



Lattices

These types form a lattice:

I least upper bounds τ1 t τ2
I greatest lower bounds τ1 u τ2

e1 : τ1 e2 : τ2
if rand () then e1 else e2 : τ 1 t τ 2



Bizzarely difficult questions

Is this true, for all α?

α→ α ≤ ⊥ → >

How about this?

(⊥ → >)→ ⊥ ≤ (α→ ⊥) t α

Yes, it turns out, by case analysis on α.

And only by case analysis.



Bizzarely difficult questions

Is this true, for all α?

α→ α ≤ ⊥ → >
How about this?

(⊥ → >)→ ⊥ ≤ (α→ ⊥) t α

Yes, it turns out, by case analysis on α.

And only by case analysis.



Bizzarely difficult questions

Is this true, for all α?

α→ α ≤ ⊥ → >
How about this?

(⊥ → >)→ ⊥ ≤ (α→ ⊥) t α

Yes, it turns out, by case analysis on α.

And only by case analysis.



Bizzarely difficult questions

Is this true, for all α?

α→ α ≤ ⊥ → >
How about this?

(⊥ → >)→ ⊥ ≤ (α→ ⊥) t α

Yes, it turns out, by case analysis on α.

And only by case analysis.



Extensibility

Let’s add a new type of function τ1
◦→ τ2.

It’s a supertype of τ1 → τ2
“function that may have side effects”

Now we have a counterexample:

α = (> ◦→ ⊥)
◦→ ⊥



Extensibility

Let’s add a new type of function τ1
◦→ τ2.

It’s a supertype of τ1 → τ2
“function that may have side effects”

Now we have a counterexample:

α = (> ◦→ ⊥)
◦→ ⊥



Extensibility

Let’s add a new type of function τ1
◦→ τ2.

It’s a supertype of τ1 → τ2
“function that may have side effects”

Now we have a counterexample:

α = (> ◦→ ⊥)
◦→ ⊥



Extensible type systems

Two techniques give us an extensible system:

I Add explicit type variables as indeterminates
gets rid of case analysis

I Require a distributive lattice
gets rid of vacuous reasoning



Extensible type systems

Two techniques give us an extensible system:

I Add explicit type variables as indeterminates
gets rid of case analysis

I Require a distributive lattice
gets rid of vacuous reasoning



Combining types

How to combine different types into a single system?

τ ::= bool | τ1 → τ2 | {`1 : τ1, . . . , `n : τn}

We should read ‘|’ as coproduct



Combining types

How to combine different types into a single system?

τ ::= bool | τ1 → τ2 | {`1 : τ1, . . . , `n : τn}

We should read ‘|’ as coproduct



Concrete syntax

Build an actual syntax for types, by writing down all
the operations on types:

τ ::= bool | τ1 → τ2 | {`1 : τ1, . . . , `n : τn} |
α | > | ⊥ | τ t τ | τ u τ

then quotient by the equations of distributive
lattices, and the subtyping order.



Concrete syntax

Build an actual syntax for types, by writing down all
the operations on types:

τ ::= bool | τ1 → τ2 | {`1 : τ1, . . . , `n : τn} |
α | > | ⊥ | τ t τ | τ u τ

then quotient by the equations of distributive
lattices, and the subtyping order.



Resulting types

We end up with all the standard types

... with the same subtyping order

... but we identify fewer of the weird types

{foo : bool} u (> → >) 6≤ bool



Resulting types

We end up with all the standard types
... with the same subtyping order

... but we identify fewer of the weird types

{foo : bool} u (> → >) 6≤ bool



Resulting types

We end up with all the standard types
... with the same subtyping order
... but we identify fewer of the weird types

{foo : bool} u (> → >) 6≤ bool



Γ ` e : τ



Principality in ML

Intuitively,
For any e typeable under Γ, there’s a best type τ

but it’s a bit more complicated than that:
For any e typeable under Γ, there’s a τ and a
substitution σ such that every possible typing of e
under Γ is a substitution instance of σΓ, τ .



Principality in ML

Intuitively,
For any e typeable under Γ, there’s a best type τ

but it’s a bit more complicated than that:
For any e typeable under Γ, there’s a τ and a
substitution σ such that every possible typing of e
under Γ is a substitution instance of σΓ, τ .



Reformulating the typing rules

The complexity arises because Γ is part question,
part answer.

Instead, split Γ:

I ∆ maps λ-bound x to a type τ

I Π maps let-bound x̂ to a typing schemes [∆]τ



Reformulating the typing rules

The complexity arises because Γ is part question,
part answer.
Instead, split Γ:

I ∆ maps λ-bound x to a type τ

I Π maps let-bound x̂ to a typing schemes [∆]τ



Π  e : [∆]τ



question︷ ︸︸ ︷
Π  e :

answer︷︸︸︷
[∆]τ



Subsumption

Define ≤∀ as the least relation closed under:

I Instatiation, replacing type variables with types

I Subtyping, replacing types with supertypes



Principality in MLsub

A principal typing scheme for e under Π
is a [∆]τ that subsumes any other.



The choose function

choose takes two values and returns one of them:

choose : ∀α.α1 → α2 → α3

In ML, α1 = α2 = α3.
With subtyping, α1 ≤ α3, α2 ≤ α3,
but α1 and α2 may be incomparable.

choose : ∀αβ.α→ β → α t β

These are equivalent (≡∀): subsume each other



The choose function

choose takes two values and returns one of them:

choose : ∀α.α1 → α2 → α3

In ML, α1 = α2 = α3.
With subtyping, α1 ≤ α3, α2 ≤ α3,
but α1 and α2 may be incomparable.

choose : ∀αβ.α→ β → α t β

These are equivalent (≡∀): subsume each other



The choose function

choose takes two values and returns one of them:

choose : ∀α.α1 → α2 → α3

In ML, α1 = α2 = α3.
With subtyping, α1 ≤ α3, α2 ≤ α3,
but α1 and α2 may be incomparable.

choose : ∀αβ.α→ β → α t β

These are equivalent (≡∀): subsume each other



The choose function

choose takes two values and returns one of them:

choose : ∀α.α1 → α2 → α3

In ML, α1 = α2 = α3.
With subtyping, α1 ≤ α3, α2 ≤ α3,
but α1 and α2 may be incomparable.

choose : ∀αβ.α→ β → α t β

These are equivalent (≡∀): subsume each other



Input and output types

τ t τ ′: produces a value which is a τ or a τ ′

τ u τ ′: requires a value which is a τ and a τ ′

t is for outputs, and u is for inputs.

Divide types into

I output types τ+

I input types τ−



Input and output types

τ t τ ′: produces a value which is a τ or a τ ′

τ u τ ′: requires a value which is a τ and a τ ′

t is for outputs, and u is for inputs.

Divide types into

I output types τ+

I input types τ−



Polar types

τ+ ::= bool | τ−1 → τ+2 | {`1 : τ+1 , . . . , `n : τ+n } |
α | τ+1 t τ+2 | ⊥ | µα.τ+

τ− ::= bool | τ+1 → τ−2 | {`1 : τ−1 , . . . , `n : τ−n } |
α | τ−1 u τ−2 | > | µα.τ−



Cases of unification

In HM inference, unification happens in three
situations:

I Unifying two input types

Introduce t

I Unifying two output types

Introduce u

I Using the output of one expression as input to
another

τ+ ≤ τ− constraint



Cases of unification

In HM inference, unification happens in three
situations:

I Unifying two input types
Introduce t

I Unifying two output types
Introduce u

I Using the output of one expression as input to
another

τ+ ≤ τ− constraint



Eliminating variables, ML-style

Suppose we have an identity function

, which uses
its argument as a τ

α→ α

| α = τ

≡∀ τ → τ

The substitution [τ/α] solves the constraint α = τ



Eliminating variables, ML-style

Suppose we have an identity function, which uses
its argument as a τ

α→ α | α = τ

≡∀ τ → τ

The substitution [τ/α] solves the constraint α = τ



Eliminating variables, ML-style

Suppose we have an identity function, which uses
its argument as a τ

α→ α | α = τ

≡∀ τ → τ

The substitution [τ/α] solves the constraint α = τ



Eliminating variables, ML-style

Suppose we have an identity function, which uses
its argument as a τ

α→ α | α = τ

≡∀ τ → τ

The substitution [τ/α] solves the constraint α = τ



“solves?”

What does it mean to solve a constraint?

1. [τ/α] trivialises the constraint α = τ
(it is a unifier),

and all other unifiers are an instance of it
(it is a most general unifier)

2. For any type τ ′, the following sets agree:
the instances of τ ′, subject to α = τ
the instances of [τ/α]τ ′



“solves?”

What does it mean to solve a constraint?

1. [τ/α] trivialises the constraint α = τ
(it is a unifier),

and all other unifiers are an instance of it
(it is a most general unifier)

2. For any type τ ′, the following sets agree:
the instances of τ ′, subject to α = τ
the instances of [τ/α]τ ′



Definition 2, now with subtyping

Suppose we have an identity function, which uses
its argument as a τ−.

α→ α | α ≤ τ−

≡∀ (α u τ−)→ (α u τ−)

≡∀ (α u τ−)→ α

The bisubstitution [α u τ−/α−] solves α ≤ τ−



Definition 2, now with subtyping

Suppose we have an identity function, which uses
its argument as a τ−.

α→ α | α ≤ τ−

≡∀ (α u τ−)→ (α u τ−)

≡∀ (α u τ−)→ α

The bisubstitution [α u τ−/α−] solves α ≤ τ−



Definition 2, now with subtyping

Suppose we have an identity function, which uses
its argument as a τ−.

α→ α | α ≤ τ−

≡∀ (α u τ−)→ (α u τ−)

≡∀ (α u τ−)→ α

The bisubstitution [α u τ−/α−] solves α ≤ τ−



Definition 2, now with subtyping

Suppose we have an identity function, which uses
its argument as a τ−.

α→ α | α ≤ τ−

≡∀ (α u τ−)→ (α u τ−)

≡∀ (α u τ−)→ α

The bisubstitution [α u τ−/α−] solves α ≤ τ−



Decomposing constraints

We only need to decompose constraints of the form
τ+ ≤ τ−.

τ1 t τ2 ≤ τ3 ≡ τ1 ≤ τ3, τ2 ≤ τ3
τ1 ≤ τ2 u τ3 ≡ τ1 ≤ τ2, τ1 ≤ τ3

Thanks to the input/output type distinction, the
hard cases of τ1 u τ2 ≤ τ3 and τ1 ≤ τ2 t τ3 can
never come up.



Combining solutions

We solve a system of multiple constraints C1,C2 by:

I Solving C1, giving a bisubstitution ξ

I Applying that to C2

I Solving ξC2, giving a bisubstitution ζ

Then ξ ◦ ζ solves the system C1,C2.



Putting it all together

biunify(C ) takes a set of constraints C , and
produces a bisubstitution solving them.

biunify(∅) = []

biunify(α ≤ α,C ) = biunify(C )

biunify(α ≤ τ,C ) = biunify(θα≤τH ; θα≤τ C ) ◦ θα≤τ
biunify(τ ≤ α,C ) = biunify(θτ≤αH ; θτ≤α C ) ◦ θτ≤α

biunify(c ,C ) = biunify(decompose(c),C )

Replace the ≤ with = and we have Martelli and
Montanari’s unification algorithm.



Putting it all together

biunify(C ) takes a set of constraints C , and
produces a bisubstitution solving them.

biunify(∅) = []

biunify(α ≤ α,C ) = biunify(C )

biunify(α ≤ τ,C ) = biunify(θα≤τH ; θα≤τ C ) ◦ θα≤τ
biunify(τ ≤ α,C ) = biunify(θτ≤αH ; θτ≤α C ) ◦ θτ≤α

biunify(c ,C ) = biunify(decompose(c),C )

Replace the ≤ with = and we have Martelli and
Montanari’s unification algorithm.



Summary

MLsub infers types by walking the syntax of the
program, but must deal with subtyping constraints
rather than just equalities. Thanks to:

I algebraically well-behaved types

I polar types, restricting occurrences of t and u
I a careful definition of “solves”

the biunify algorithm can always handle these
constraints, producing a principal type.



Questions?

http://www.cl.cam.ac.uk/~sd601/mlsub

stephen.dolan@cl.cam.ac.uk



Mutable references

References are generally considered “invariant”.

Instead, consider ref a two-argument constructor

(α, β) ref

with operations:

make : (α, α) ref

get : (⊥, β) ref→ β

set : (α,>) ref→ α→ unit


	The MLsub Type System
	Principality
	Type Inference with Polar Types

