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The select function

select p v d = if (p v) then v else d

In ML, select has type scheme

∀α. (α→ bool)→ α→ α→ α
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Expressions of MLsub
We have functions

x λx .e e1 e2

... and records

{`1 = e1, . . . , `n = en} e.`

... and booleans

true false if e1 then e2 else e3

... and let

x̂ let x̂ = e1 in e2



Γ ` e : τ



Typing rules of MLsub

MLsub is

ML +

(Sub)
Γ ` e : τ1
Γ ` e : τ2

τ1 ≤ τ2



Γ ` e : τ



Constructing Types

The standard definition of types looks like:

τ ::= ⊥ | τ → τ | >

(ignoring records and booleans for now)

with a subtyping relation like:

⊥ ≤ τ τ ≤ >
τ ′1 ≤ τ1 τ2 ≤ τ ′2
τ1 → τ2 ≤ τ ′1 → τ ′2
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Lattices

These types form a lattice:

I least upper bounds τ1 t τ2
I greatest lower bounds τ1 u τ2

e1 : τ1 e2 : τ2
if rand () then e1 else e2 : τ 1 t τ 2
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Bizzarely difficult questions

Is this true, for all α?

α→ α ≤ ⊥ → >

How about this?

(⊥ → >)→ ⊥ ≤ (α→ ⊥) t α

Yes, it turns out, by case analysis on α.

And only by case analysis.



Bizzarely difficult questions

Is this true, for all α?

α→ α ≤ ⊥ → >
How about this?

(⊥ → >)→ ⊥ ≤ (α→ ⊥) t α

Yes, it turns out, by case analysis on α.

And only by case analysis.



Bizzarely difficult questions

Is this true, for all α?

α→ α ≤ ⊥ → >
How about this?

(⊥ → >)→ ⊥ ≤ (α→ ⊥) t α

Yes, it turns out, by case analysis on α.

And only by case analysis.



Bizzarely difficult questions

Is this true, for all α?

α→ α ≤ ⊥ → >
How about this?

(⊥ → >)→ ⊥ ≤ (α→ ⊥) t α

Yes, it turns out, by case analysis on α.

And only by case analysis.



Extensibility

Let’s add a new type of function τ1
◦→ τ2.

It’s a supertype of τ1 → τ2
“function that may have side effects”

Now we have a counterexample:

α = (> ◦→ ⊥)
◦→ ⊥
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gets rid of case analysis

I Require a distributive lattice
gets rid of vacuous reasoning
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Combining types

How to combine different types into a single system?
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We should read ‘|’ as coproduct
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Concrete syntax

Build an actual syntax for types, by writing down all
the operations on types:

τ ::= bool | τ1 → τ2 | {`1 : τ1, . . . , `n : τn} |
α | > | ⊥ | τ t τ | τ u τ

then quotient by the equations of distributive
lattices, and the subtyping order.
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Resulting types

We end up with all the standard types

... with the same subtyping order

... but we identify fewer of the weird types

{foo : bool} u (> → >) 6≤ bool
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Principality in ML

Intuitively,
For any e typeable under Γ, there’s a best type τ

but it’s a bit more complicated than that:
For any e typeable under Γ, there’s a τ and a
substitution σ such that every possible typing of e
under Γ is a substitution instance of σΓ, τ .
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Reformulating the typing rules

The complexity arises because Γ is part question,
part answer.

Instead, split Γ:

I ∆ maps λ-bound x to a type τ

I Π maps let-bound x̂ to a typing schemes [∆]τ
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Π  e : [∆]τ



question︷ ︸︸ ︷
Π  e :

answer︷︸︸︷
[∆]τ



Subsumption

Define ≤∀ as the least relation closed under:

I Instatiation, replacing type variables with types

I Subtyping, replacing types with supertypes



Principality in MLsub

A principal typing scheme for e under Π
is a [∆]τ that subsumes any other.



The choose function

choose takes two values and returns one of them:

choose : ∀α.α1 → α2 → α3

In ML, α1 = α2 = α3.
With subtyping, α1 ≤ α3, α2 ≤ α3,
but α1 and α2 may be incomparable.

choose : ∀αβ.α→ β → α t β

These are equivalent (≡∀): subsume each other
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Input and output types

τ t τ ′: produces a value which is a τ or a τ ′

τ u τ ′: requires a value which is a τ and a τ ′

t is for outputs, and u is for inputs.

Divide types into

I output types τ+

I input types τ−
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Polar types

τ+ ::= bool | τ−1 → τ+2 | {`1 : τ+1 , . . . , `n : τ+n } |
α | τ+1 t τ+2 | ⊥ | µα.τ+

τ− ::= bool | τ+1 → τ−2 | {`1 : τ−1 , . . . , `n : τ−n } |
α | τ−1 u τ−2 | > | µα.τ−



Cases of unification

In HM inference, unification happens in three
situations:

I Unifying two input types

Introduce t

I Unifying two output types

Introduce u

I Using the output of one expression as input to
another

τ+ ≤ τ− constraint
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“solves?”

What does it mean to solve a constraint?

1. [τ/α] trivialises the constraint α = τ
(it is a unifier),

and all other unifiers are an instance of it
(it is a most general unifier)

2. For any type τ ′, the following sets agree:
the instances of τ ′, subject to α = τ
the instances of [τ/α]τ ′
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Definition 2, now with subtyping

Suppose we have an identity function, which uses
its argument as a τ−.

α→ α | α ≤ τ−

≡∀ (α u τ−)→ (α u τ−)

≡∀ (α u τ−)→ α

The bisubstitution [α u τ−/α−] solves α ≤ τ−
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Decomposing constraints

We only need to decompose constraints of the form
τ+ ≤ τ−.

τ1 t τ2 ≤ τ3 ≡ τ1 ≤ τ3, τ2 ≤ τ3
τ1 ≤ τ2 u τ3 ≡ τ1 ≤ τ2, τ1 ≤ τ3

Thanks to the input/output type distinction, the
hard cases of τ1 u τ2 ≤ τ3 and τ1 ≤ τ2 t τ3 can
never come up.



Combining solutions

We solve a system of multiple constraints C1,C2 by:

I Solving C1, giving a bisubstitution ξ

I Applying that to C2

I Solving ξC2, giving a bisubstitution ζ

Then ξ ◦ ζ solves the system C1,C2.



Putting it all together

biunify(C ) takes a set of constraints C , and
produces a bisubstitution solving them.

biunify(∅) = []

biunify(α ≤ α,C ) = biunify(C )

biunify(α ≤ τ,C ) = biunify(θα≤τH ; θα≤τ C ) ◦ θα≤τ
biunify(τ ≤ α,C ) = biunify(θτ≤αH ; θτ≤α C ) ◦ θτ≤α

biunify(c ,C ) = biunify(decompose(c),C )

Replace the ≤ with = and we have Martelli and
Montanari’s unification algorithm.
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Summary

MLsub infers types by walking the syntax of the
program, but must deal with subtyping constraints
rather than just equalities. Thanks to:

I algebraically well-behaved types

I polar types, restricting occurrences of t and u
I a careful definition of “solves”

the biunify algorithm can always handle these
constraints, producing a principal type.



Questions?

http://www.cl.cam.ac.uk/~sd601/mlsub

stephen.dolan@cl.cam.ac.uk



Mutable references

References are generally considered “invariant”.

Instead, consider ref a two-argument constructor

(α, β) ref

with operations:

make : (α, α) ref

get : (⊥, β) ref→ β

set : (α,>) ref→ α→ unit
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