Fun with Semirings
A functional pearl on the abuse of linear algebra

Stephen Dolan

Computer Laboratory
University of Cambridge
stephen.dolan@cl.cam.ac.uk

September 25, 2013
Linear algebra is magic

If your problem can be expressed as vectors and matrices, it is essentially already solved.

Linear algebra works with fields, like the real or complex numbers: sets with a notion of addition, multiplication, subtraction and division.
We don’t have fields

CS has many structures with “multiplication” and “addition”:

- conjunction and disjunction
- sequencing and choice
- intersection and union
- product type and sum type

But very few with a sensible “division” or “subtraction”.

What we have are *semirings*, not fields.
A *closed semiring* is a set with some notion of addition and multiplication as well as a unary operation *, where:

\[
\begin{align*}
 a + b &= b + a & (+, 0) & \text{is a commutative monoid} \\
 a + (b + c) &= (a + b) + c \\
 a + 0 &= a \\
 a \cdot (b \cdot c) &= (a \cdot b) \cdot c & (\cdot, 1) & \text{is a monoid, with zero} \\
 a \cdot 1 &= 1 \cdot a = a \\
 a \cdot 0 &= 0 \cdot a = 0 \\
 a \cdot (b + c) &= a \cdot b + a \cdot c & \cdot \text{distributed over } + \\
 (a + b) \cdot c &= a \cdot c + b \cdot c \\
 a^* &= 1 + a \cdot a^* & \text{closure operation}
\end{align*}
\]

A closed semiring has a closure operation \ast, where

$$a^\ast = 1 + a \cdot a^\ast = 1 + a^\ast \cdot a$$

Intuitively, we can often think of closure as:

$$a^\ast = 1 + a + a^2 + a^3 + \ldots$$
infixl 9 @.
infixl 8 @+
class Semiring r where
 zero, one :: r
 closure :: r \rightarrow r
 (@+), (@.) :: r \rightarrow r \rightarrow r

instance Semiring Bool where
 zero = False
 one = True
 closure x = True
 (@+) = (||)
 (@.) = (&&)
Directed graphs are represented as matrices of Booleans. G^2 gives the two-hop paths through G.

$$
\begin{align*}
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}
\cdot
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\end{align*}
$$

$$(AB)_{ij} = \sum_k A_{ik} \cdot B_{kj}$$

$$= \exists k \text{ such that } A_{ik} \land B_{kj}$$
The closure of an adjacency matrix gives us the reflexive transitive closure of the graph.

\[
\begin{pmatrix}
1 \\
\downarrow \\
2 \\
\downarrow \\
3
\end{pmatrix}^* =
\begin{pmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}
\]

Closure of an adjacency matrix

\[
A^* = 1 + A \cdot A^*
\]

\[
= 1 + A + A^2 + A^3 + \ldots
\]
A semiring of matrices

A matrix is represented by a list of lists of elements.

```haskell
data Matrix a = Matrix [[a]]
instance Semiring a ⇒ Semiring (Matrix a) where
  ...
```

Matrix addition and multiplication is as normal, and Lehmann gives an imperative algorithm for calculating the closure of a matrix.
The correctness proof of the closure algorithm states:

If \(M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \)

then \(M^* = \begin{pmatrix} A^* + B' \cdot \Delta^* \cdot C' & B' \cdot \Delta^* \\ \Delta^* \cdot C' & \Delta^* \end{pmatrix} \)

where \(B' = A^* \cdot B \), \(C' = C \cdot A^* \) and \(\Delta = D + C \cdot A^* \cdot B \).
We can split a matrix into blocks, and join them back together.

```haskell
type BlockMatrix a = (Matrix a, Matrix a, Matrix a, Matrix a)

msplit :: Matrix a → BlockMatrix a
mjoin :: BlockMatrix a → Matrix a
```
The algorithm is imperative, but the *correctness proof* gives a recursive functional implementation:

\[
\text{closure} \ (\text{Matrix} \ [[x]]) = \text{Matrix} \ [[\text{closure} \ x]] \\
closure \ m = \text{mjoin} \\
\quad (\text{first}' \ @+ \text{top}' \ @. \text{rest}' \ @. \text{left}', \text{top}' \ @. \text{rest}', \\
\quad \text{rest}' \ @. \text{left}', \text{rest}') \\
\text{where} \\
\quad (\text{first}, \text{top}, \text{left}, \text{rest}) = \text{msplit} \ m \\
\quad \text{first}' = \text{closure} \ \text{first} \\
\quad \text{top}' = \text{first}' \ @. \text{top} \\
\quad \text{left}' = \text{left} @. \text{first}' \\
\quad \text{rest}' = \text{closure} \ (\text{rest} @+ \text{left}' @. \text{top})
\]
Distances form a semiring, with \cdot as addition and $+$ as choosing the shorter. The closure algorithm then finds shortest distances.

data ShortestDistance = Distance Int | Unreachable
instance Semiring ShortestDistance where
 zero = Unreachable
 one = Distance 0
 closure x = one

 x @+ Unreachable = x
 Unreachable @+ x = x
 Distance a @+ Distance b = Distance (min a b)

 x @. Unreachable = Unreachable
 Unreachable @. x = Unreachable
 Distance a @. Distance b = Distance (a + b)
Shortest paths in a graph

We can also recover the actual path:

```haskell
data ShortestPath n = Path Int [(n,n)] | NoPath

instance Ord n ⇒ Semiring (ShortestPath n) where
    zero = NoPath
    one = Path 0 []
    closure x = one

    x @+ NoPath = x
    NoPath @+ x = x
    Path a p @+ Path a' p' =
        | a < a' = Path a p
        | a == a' && p < p' = Path a p
        | otherwise = Path a' p'

    x @. NoPath = NoPath
    NoPath @. x = NoPath
    Path a p @. Path a' p' = Path (a + a') (p ++ p')
```

Stephen Dolan
Fun with Semirings
Solving linear equations

If we have a linear equation like:

\[x = a \cdot x + b \]

then \(a^* \cdot b \) is a solution:

\[a^* \cdot b = (a \cdot a^* + 1) \cdot b \]
\[= a \cdot (a^* \cdot b) + b \]

If we have a system of linear equations like:

\[
\begin{align*}
 x_1 &= A_{11}x_1 + A_{12}x_2 + \ldots + A_{1n}x_n + B_1 \\
 \vdots \\
 x_n &= A_{n1}x_1 + A_{n2}x_2 + \ldots + A_{nn}x_n + B_n
\end{align*}
\]

then \(A^* \cdot B \) is a solution (for a matrix \(A \) and vector \(B \) of coefficients) which can be found using closure.
Regular expressions and state machines

A state machine can be described by a regular grammar:

\[A \rightarrow xB \]
\[B \rightarrow yA + zC \]
\[C \rightarrow 1 \]

The regular grammar is a system of linear equations, and the regular expression describing it can be found by closure.
Reconstructing regular expressions
Solving equations in the “free” semiring rebuilds regular expressions from a state machine.

Dataflow analysis
Solving equations in the semiring of sets of variables does live variables analysis (among others).
Suppose the next value in a sequence is a linear combination of previous values:

\[F(0) = 0 \]
\[F(1) = 1 \]
\[F(n) = F(n - 2) + F(n - 1) \]

We represent these as formal power series:

\[F = x + x^2 + 2x^3 + 3x^4 + 5x^5 + 8x^6 \ldots \]

Multiplying by \(x \) shifts the sequence one place, so:

\[F = 1 + (x^2 + x) \cdot F \]
We represent power series as lists: \(a + px\).

\[
\text{instance } \text{Semiring } r \Rightarrow \text{Semiring } [r] \text{ where}
\]
\[
\text{zero } = []
\]
\[
\text{one } = [\text{one}]
\]

Addition is pointwise:

\[
\begin{align*}
[] \oplus y &= y \\
x \oplus [] &= x \\
(x:xs) \oplus (y:ys) &= (x \oplus y):(xs \oplus ys)
\end{align*}
\]
Multiplying power series works like this:

\[(a + px)(b + qx) = ab + (aq + pb + pqx)x\]

In Haskell:

```
[] @. _ = []
_ @. [] = []
(a:p) @. (b:q) = (a @. b):(map (a @.) q @+ map (@. b) p @+
  (zero @(p @. q))))
```

This is convolution, without needing indices.

The closure of $a + px$ must satisfy:

$$(a + px)^* = 1 + (a + px)^* \cdot (a + px)$$

This has a solution satisfying:

$$(a + px)^* = a^* \cdot (1 + px \cdot (a + px)^*)$$

which translates neatly into (lazy!) Haskell:

```
closure [] = one
closure (a:p) = r
  where r = [closure a] ⊙ (one : (p ⊙ r ))
```
Fibonacci, again

\[
F = 1 + (x + x^2)F \\
= (x + x^2)^* \\
\]

\[\text{fib} = \text{closure} [0, 1, 1]\]

Any linear recurrence can be solved with closure.
Suppose we are trying to fill our baggage allowance with:

- Knuth books: weight 10, value 100
- Haskell books: weight 7, value 80
- Java books: weight 9, value 3

The best value we can have with weight n is:

$$\text{best}_n = \max(100 + \text{best}_{n-10}, 80 + \text{best}_{n-7}, 3 + \text{best}_{n-9})$$

In the $(\max, +)$-semiring, that reads:

$$\text{best}_n = 100 \cdot \text{best}_{n-10} + 80 \cdot \text{best}_{n-7} + 3 \cdot \text{best}_{n-9}$$

which is a linear recurrence.
Many problems are linear, for a suitable notion of “linear”.

stephen.dolan@cl.cam.ac.uk
Live variables analysis

Many dataflow analyses are just linear equations in a semiring. This live variables analysis uses the semiring of sets of variables.

\[\text{IN}_A = \text{OUT}_A \cap \{x\} \]
\[\text{IN}_B = \text{OUT}_B \cup \{x, y\} \]
\[\text{IN}_C = \text{OUT}_C \cup \{x\} \]
\[\text{IN}_D = \text{OUT}_D \cup \{x\} \]

\[\text{OUT}_A = \text{IN}_B \]
\[\text{OUT}_B = \text{IN}_C \cup \text{IN}_D \]
\[\text{OUT}_C = \text{IN}_B \]
\[\text{OUT}_D = \emptyset \]
Petri nets

Timed event graphs (a form of Petri net with a notion of time) can be viewed as “linear” systems, in the $(\max, +)$-semiring

This transition fires for the nth time after all of its inputs have fired for the nth time.

The nth token is available from this place 5 time units after then $(n-3)$th token is available from its input.