
Malfunctional Programming

Stephen Dolan

June 10, 2016

Malfunction is an untyped program representation
intended as a compilation target for functional
languages, consisting of a thin wrapper around
OCaml’s Lambda intermediate representation.

Compilers targeting Malfunction convert programs
to a simple s-expression-based syntax with clear
semantics, which is then compiled to native code using
OCaml’s back-end, enjoying both the optimisations
of OCaml’s new flambda pass, and its battle-tested
runtime and garbage collector.

1 Introduction

When a programming language researcher designs
a new language to explore some particular aspect
of programming (in my case, subtyping, in yours,
perhaps dependent types, probabilistic programming,
or COMEFROM-with-current-continuation), the first
person it’s shown to tends to rudely interject with the
following question:
“Very nice, but can you make it go?”
Even if the researcher comes prepared for this, the

follow-up is always:
“Can you make it go fast?”
Implementing a language from scratch is a daunting

task. However, despite the many high-level differences
between programming languages, their requirements of
a compiler back-end tend to be very similar. It seems
prudent, therefore, to make use of the many years of
work put into making OCaml not just go, but go fast.

Malfunction is an untyped language allowing you
to do just that. The syntax is loosely based on
the OCaml compiler’s -dlambda output (although
Malfunction’s syntax is simplified, to allow easy code
generation), and the semantics are an untyped lambda
calculus (stricter in most places than those of Lambda,
to remain robust to future changes to OCaml). For
example, this OCaml:

List.iter print_string ["Hello"; "World"]

is equivalent to this expression in Malfunction:

(apply

(global $List $iter)

(global $Pervasives $print_string)

(block "Hello" (block "World" 0)))

2 Why OCaml?

Why re-use OCaml’s back-end specifically, when there
are plenty of other compilers available? The central
issues are efficiency and garbage collection.

C compilers and related projects like LLVM provide
very efficient code generation, but it is tricky to
integrate garbage collection. C compilers assume
ownership of the stack layout, and so may introduce
temporary stack references to heap objects. A
conservative garbage collector can find these references
(by assuming any pointer-like bit-pattern is in fact a
heap pointer), but an efficient moving collector needs
precise data about stack layout, so that heap objects
can be safely relocated.

Higher-level virtual machines such as the Java
Virtual Machine and the .NET Common Language
Runtime come with state-of-the-art garbage collectors.
However, their design is closely tied to the sort of
languages they were built to run, and bytecode
verification means they will refuse to run any program
whose safety cannot be explained in terms of the Java
or C# type system. So, it is difficult to efficiently
compile programs proven to be safe by more advanced
type systems (although not impossible, see e.g.
OCaml-Java [3]), as the verifier must be pacified by
redundant runtime type checks.

Dynamic languages, such as Scheme, Smalltalk
or Javascript, are easy to compile to and have
reasonably fast implementations. However, when
running statically typed functional programs, time is
wasted on runtime type checks.

OCaml’s Lambda is an easy compilation target
(being essentially the untyped lambda calculus [4]),
which loses no efficiency in runtime type tests: instead,

1

it assumes its input to already have been proven safe
by a high-level type checker. This makes it an ideal
target for statically-typed languages with advanced
type systems, since the safety of programs need not be
explained to the backend. The performance of Lambda
is high, especially since the recent work on inlining [2].

3 Reusing Lambda

The next question is whether it’s at all valid to reuse
Lambda, which was designed solely as an intermediate
representation for OCaml. In principle, optimisations
made by the OCaml back-end need only be valid for
the sort of programs that the OCaml front-end can
generate. However, this is a surprisingly large set. For
instance, consider the following strange function:

(lambda (t)

(let

(if (== (apply (field 0 t) 0)) 0

(apply (field 1 t) 42)

(+ (field 1 t) (field 2 t)))))

This function takes a tuple whose first component is
a function, which is called. If that function returns 0,
then the tuple is a pair whose second field maps integers
to integers, while if it returns 1 then the tuple is a
triple whose second and third fields are both integers.
Odd as it seems, this function can be written in

OCaml by abuse of GADTs1. In fact, the advanced
features of OCaml’s type system (GADTs, functors,
first-class polymorphism, etc.) are erased before
compilation to Lambda, so it would be remarkably
difficult for the back-end to prove that a program could
not have been compiled from OCaml. So, I conjecture
that OCaml will not miscompile any Malfunction
program, or at least that when it does, it will also
miscompile a sufficiently contrived OCaml program.

4 Semantics of Malfunction

As with all low-level untyped languages, some
behaviour is undefined. The snippet (field 0 0),
which attempts to dereference an integer, will cause
a segmentation fault on a good day (but even that’s
not guaranteed).
A problem with compilation to C and related lan-

guages is that it’s almost impossible to know whether
a given snippet has defined behaviour, since many
undefined operations tend to work fine, at least on
certain versions of certain compilers at certain settings.

1This is left as an exercise to the reader

While Malfunction has plenty of undefined be-
haviour, it also comes with a pedantic interpreter,
which defines a semantics and can be used to (slowly)
evaluate any program to detect undefined behaviour.
This semantics is stricter than that of Lambda: for
instance, accessing a tuple using array primitives
tends to work in Lambda, since they are represented
the same way, but is banned by the Malfunction
semantics. This stricter semantics makes Malfunction
more robust to future changes in the OCaml backend.

5 Experimental Idris backend

An experimental Malfunction backend for the depen-
dently typed programming language Idris [1] is avail-
able. This backend does not yet implement all Idris
primitives, so cannot run all programs. Nonetheless,
preliminary benchmarking of some simple programs
(currently, Idris lacks a comprehensive benchmark
suite) shows the Malfunction backend outperforming
Idris’s C backend by a factor between 3.2x and 14x.

6 Other applications

While Malfunction is intended primarily as a compi-
lation target for statically-typed functional languages,
it can also be used:

• To randomly generate programs with well-defined
semantics (by checking them against the inter-
preter), in order to find bugs in the optimising
compiler, in the style of Csmith [5].

• As an alternative to C/Assembly for implement-
ing primitive operations, as code written in Mal-
function gets inlined into code written in OCaml.

Malfunction is available from:

http://github.com/stedolan/malfunction

References

[1] E. Brady et al. Idris, a language with dependent types.
IFL, 2008.

[2] P. Chambart. High level OCaml optimisations. OCaml
Workshop, 2013.

[3] X. Clerc. OCaml-Java: OCaml on the JVM. In Trends
in Functional Programming, pages 167–181. Springer,
2012.

[4] X. Leroy. Le systeme caml special light: modules et
compilation efficace en caml. 1995.

[5] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding
and understanding bugs in C compilers. PLDI, 2011.

2

